Commutator Length of Finitely Generated Linear Groups

نویسنده

  • Mahboubeh Alizadeh Sanati
چکیده

The commutator length “cl G ” of a group G is the least natural number c such that every element of the derived subgroup of G is a product of c commutators. We give an upper bound for cl G when G is a d-generator nilpotent-by-abelian-by-finite group. Then, we give an upper bound for the commutator length of a soluble-by-finite linear group over C that depends only on d and the degree of linearity. For such a group G, we prove that cl G is less than k k 1 /2 12d3 o d2 , where k is the minimum number of generators of upper triangular subgroup of G and o d2 is a quadratic polynomial in d. Finally we show that if G is a soluble-by-finite group of Prüffer rank r then cl G ≤ r r 1 /2 12r3 o r2 , where o r2 is a quadratic polynomial in r.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely Generated Infinite Simple Groups of Infinite Commutator Width and Vanishing Stable Commutator Length

It is shown that there exists a finitely generated infinite simple group of infinite commutator width and infinite square width in which every conjugation-invariant norm is stably bounded, and in particular stable commutator length vanishes. Moreover, a recursive presentation of such a group with decidable word and conjugacy problems is constructed.

متن کامل

Finitely Generated Infinite Simple Groups of Infinite Commutator Width

It is shown that there exists a finitely generated infinite simple group of infinite commutator width, and that the commutator width of a finitely generated infinite boundedly simple group can be arbitrarily large. Besides, such groups can be constructed with decidable word and conjugacy problems.

متن کامل

The Groups of Fibred 2-knots

We explore algebraic characterizations of 2-knots whose associated knot manifolds fibre over lower-dimensional orbifolds, and consider also some issues related to the groups of higherdimensional fibred knots. Nontrivial classical knot groups have cohomological dimension 2, and the knot is fibred if and only if the commutator subgroup is finitely generated, in which case the commutator subgroup ...

متن کامل

Perfect and Acyclic Subgroups of Finitely Presentable Groups

We consider acyclic groups of low dimension. To indicate our results simply, let G′ be the nontrivial perfect commutator subgroup of a finitely presentable group G. Then def(G) ≤ 1. When def(G) = 1, G′ is acyclic provided that it has no integral homology in dimensions above 2 (a sufficient condition for this is that G′ be finitely generated); moreover, G/G′ is then Z or Z. Natural examples are ...

متن کامل

Symbolic Collection Using Deep Thought

We describe the “Deep Thought” algorithm, which can, among other things, take a commutator presentation for a finitely generated torsion-free nilpotent group G, and produce explicit polynomials for the multiplication of elements of G. These polynomials were first shown to exist by Philip Hall, and allow for “symbolic collection” in finitely generated nilpotent groups. We discuss various practic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008